Opis zadania Jest to zadanie maturalne zamknięte, które pochodzi z egzaminu maturalnego z 2012 roku poziom podstawowy, za które można było uzyskać 1 punkt. W zadaniu poruszane są takie zagadnienia jak: mnożenie liczby przez nawias, wzory skróconego mnożenia oraz kwadrat sumy. Lekcja online: Potęgi i pierwiastki Czas trwania: 1 h 14 minut W tej lekcji omówione są następujące zagadnienia: Potęgi i pierwiastki; Kupując tę lekcję, otrzymujesz nagranie video (teoria połączona z przykładami), krok po kroku rozwiązane zadania maturalne + prezentację w pliku PDF. Przygotowanie do matury: Zadanie maturalne nr 877. zamknięte. Równanie wymierne 3 x − 1 x + 5 = 3, gdzie x ≠ − 5: A) nie ma rozwiązań rzeczywistych. B) ma dokładnie jedno rozwiązanie rzeczywiste. C) ma dokładnie dwa rozwiązania rzeczywiste. Zdajesz maturę 2023? Dołącz do darmowych czwartkowych powtórek maturalnych! Dziś przerabiamy ZADANIA MATURALNE Z POTĘG I PIERWIASTKÓW!W każdy czwartek o godz ZADANIA - potęgi i pierwiastki (1) - podstawy. PODSTAWY > Potęgi i pierwiastki (1)Film został przygotowany na potrzeby projektu Uniwersytet Partnerem Gospodarki Opartej na Wiedzy, przez Uniwersytet Śląski w Katowicach. Tematyka wykładu: „Potęgi, pierwiastki i logarytmy .16. a) Oblicz pierwiastek kwadratowy z ósmej potegi liczby 2. Potęgi i pierwiastki. Treści zadań z matematyki, 4200_7084 Baza zawiera: 19752 zadania, 1833 zestawy, 35 poradników. Zadania maturalne; Egzamin 2023 UWAGA FILM UWZGLĘDNIA WYTYCZNE DO NOWEJ MATURY oraz starej matury CześćJeśli chcesz wspomóc kanał skromnym napiwkiem zapraszam do skorzystania 79P0Vu. Potęgi i pierwiastkiWzory dotyczące potęg i pierwiastków, wyciąganie czynnika przed symbol pierwiastka, zadania typu „wykaż, że”OPISPotrafisz inne działy, ale potęgi a w szczególności PIERWIASTKI zawsze Cię denerwowały i uważałeś je za zło konieczne, które potrafi Ci kompletnie namieszać w głowie? Przestań się w tym gubić i raz na zawsze uporządkuj te tematy w tej lekcji Będziesz wiedział jak używać wzorów z tablic CKE dotyczących potęg (teoria na przykładach) Przypomnisz sobie jak używać wzorów dotyczących pierwiastków (Uwaga! Znajdziesz tu wzory, których brakuje w tablicach CKE) Poukładasz sobie w głowie jak to było z wyciąganiem czynnika przed symbol pierwiastka Rozwiążemy razem 17 najczęściej występujących na maturze typów zadań (potęgi + pierwiastki)Kupując tę lekcję, otrzymujesz nagranie video (teoria połączona z przykładami), krok po kroku rozwiązane zadania maturalne + prezentację w pliku PDF. Dostęp do lekcji otrzymujesz od razu po zaksięgowaniu wpłaty. Czas trwania: 42 minutyWspóładministratorem danych osobowych w przypadku tego kursu jest Kornelia Duda. Klauzulę informacyjną znajdziesz tutaj. MATERIAŁ MATURALNY > potęgi i pierwiastki Matematyka – matura - zadania z pełnym rozwiązaniem: potęgi i pierwiastki, wykładnik wymierny, wzory na potęgi Zadanie za pomocą znaku pierwiastka. Zadanie za pomocą potęgi. W przypadku jakichkolwiek pytań zapraszamy na nasze forum :) Przygotowanie do matury – Pierwiastki i Potęgi – należą do podstawowych działań matematycznych zaraz po dodawaniu, odejmowaniu, mnożeniu i dzieleniu. Potęgowanie jest skróconym zapisem mnożenia jednakowych liczb, z kolei pierwiastkowanie jest odwrotnością potęgowania. Więcej na temat potęg i pierwiastków na stronie tablice maturalne. Przygotowanie do matury: Zadanie maturalne nr 78zadanie zamknięteDane są liczby \( a=3,6\cdot 10^{-12} \) oraz \( b=2,4\cdot 10^{-20} \) Wtedy iloraz \( \frac{a}{b} \) jest równy A) \( 8,64\cdot 10^{-32} \) B) \( 1,5\cdot 10^{-8} \) C) \( 1,5\cdot 10^{8} \) D) \( 8,64\cdot 10^{32} \) Przygotowanie do matury: Zadanie maturalne nr 77zadanie zamknięteLiczba \( \sqrt[3]{\frac{7}{3}} \cdot \sqrt[3]{\frac{81}{56}} \) równa A) \( \frac{\sqrt{3}}{2} \) B) \( \frac{2}{2\sqrt[3]{21}} \) C) \( \frac{3}{2} \) D) \( \frac{9}{4} \) Przygotowanie do matury: Zadanie maturalne nr 66Wykaż, że liczba \( 3^{54} \) jest rozwiązaniem równania \( 243^{11}-81^{14}+7x=9^{27} \).Przygotowanie do matury: Zadanie maturalne nr 57zadanie zamknięteLiczba 58 * 16-2 jest równa: Przygotowanie do matury: Zadanie maturalne nr 55zadanie zamknięteDla każdej dodatniej liczby a iloraz jest równy Przygotowanie do matury: Zadanie maturalne nr 52zadanie zamkniętePrzygotowanie do matury: Zadanie maturalne nr 48zadanie zamknięteWartość wyrażenia jest równa: A) -2 B) -2√3 C) 2 D) 2√3 Przygotowanie do matury: Zadanie maturalne nr 36zadanie zamknięteLiczba \( \sqrt[3]{\left ( -8 \right )^{-1}} \; \cdot 16^{\frac{3}{4}} \) jest równa: A) \( -8 \) B) \( -4 \) C) \( 2 \) D) \( 4 \) powrót Instrukcja iteracyjna (potocznie pętla) pozwala powtórzyć pewien ciąg instrukcji skończoną ilość razy. W tym momencie zaczyna się prawdziwe programowanie i wykorzystanie potencjału komputera w dokonywaniu różnego rodzaju obliczeń. Większość algorytmów maturalnych realizowana jest za pomocą instrukcji iteracyjnych. Dzięki szybkim procesorom możemy wykonywać miliardy operacji w bardzo szybkim czasie. Podsumowując: pętla służy do powtarzania pewnego fragmentu kodu skończoną ilość razy. Np. Jeśli chcesz wypisać tysiąc kolejnych liczb, użyjesz do tego pętli, która w dwóch linijkach rozwiąże problem. W języku Python do dyspozycji mamy dwie instrukcje iteracyjne: pętla while pętla while — else pętla for break continue Pętla while Pętla while w Python działa na takiej samej zasadzie jak w języku C++. Pętla ta powtarza instrukcje należące do jej bloku, tak długo, jak długo prawdziwy jest warunek (warunki) do niej przyporządkowany. Tworząc pętle while: musisz zadbać, aby liczba jej wywołań była skończona. Struktura pętli while: while warunek: instrukcja_1_bloku_while instrukcja_2_bloku_while instrukcja_3_bloku_while ..... Przykład 1 Napisz program, który wyświetli sto kolejnych dodatnich liczb całkowitych. x = 1 while x 0: suma += liczba % 10 # wyłuskaj cyfrę jedności liczba //= 10 # skróć o cyfrę jedności print(suma) # wypisz sumę cyfr liczby x Pętla while-else Podobnie jak w instrukcji warunkowej, możemy zastosować alternatywę dla sytuacji, gdy warunek będzie fałszywy. Zasada działania samej pętli while jest taka sama jak w przypadku bez else. Struktura pętli while else: while warunek: instrukcja_1_bloku_while instrukcja_2_bloku_while instrukcja_3_bloku_while ..... else: intrukcja_1_dla_bloku_else intrukcja_2_dla_bloku_else intrukcja_3_dla_bloku_else ..... Przykład 3 Napisz program, który dla danego przedział [a..b] wypisze liczby naprzemiennie: a, b, a+1, b-1, ... np. dla przedziału [2..8] program powinien wypisać: 2 8 3 7 4 6 5. a = int(input("Podaj początek przedziału: ")) b = int(input("Podaj koniec przedziału: ")) while a x//2: # jeśli przekroczymy wartość połowy liczby x, to nie ma co dalej szukać break if x % i == 0: print(i) print(x) Przykładowe wejście/wyjście Podaj liczbę: 45 1 3 5 9 15 45 Instrukcja continueWywołanie instrukcji continue w pętli while lub for spowoduje ponowienie działania pętli, pomijając instrukcje należące do bloku pętli, znajdujące się poniżej instrukcji continue. Przykład 9 Napisz program, który wypisze wszystkie całkowite nieparzyste liczby z przedziału [a..b]. a = int(input("Podaj początek przedziału: ")) b = int(input("Podaj koniec przedziału: ")) for i in range(a, b+1): if i % 2 == 0: # jeśli liczba jest parzysta to uruchamiamy kolejną iterację pętli continue print(i) Przykładowe wejście/wyjście Podaj początek przedziału: 3 Podaj koniec przedziału: 10 3 5 7 9 Niech \( m, n \) będą liczbami całkowitymi dodatnimi. Definiujemy: dla \( a\neq 0 \) : \[ a^{-n}=\frac{1}{a^{n}} \]\[ a^{0}=1 \] dla \( a\geq 0 \): \[ a^{\frac{m}{n}}=\sqrt[n]{a^{m}} \] dla \( a > 0 \): \[ a^{-\frac{m}{n}}=\frac{1}{\sqrt[n]{a^{m}}} \] Działania na potęgach: \[ a^{r}*a^{s}=a^{r+s} \] \[ \left( a^{r}\right)^{s}=a^{r*s} \] \[ \left ( {\frac {a} {b}} \right )^{r}=\frac {{a}^{r}} {{b}^{r}} \] \[ \frac{a^{r}}{a^{s}}=a^{r-s} \] \[ \left ( {a*b} \right )^{r}={a}^{r}*{b}^{r} \] Pamiętajmy, że w ostatnim z wymienionych wzorów, że \( b\neq 0 \) .

potęgi i pierwiastki zadania maturalne